J. B. Bamberg^{1*}, S. D. Kiru² and A. H. del Rio³ RAPD Comparison of Reputed Duplicate Populations in the Russian and US Potato Genebanks

¹USDA/Agricultural Research Service, Vegetable Crops Research Unit, Inter-Regional Potato Introduction Station, 4312 Hwy. 42, Sturgeon Bay, WI 54235, USA. ²N. I. Vavilov Institute Potato Genebank, 42 Hertzen Street, 190000 St. Petersburg, Russia. ³Dept. of Horticulture,

University of Wisconsin, 1575 Linden Drive, Madison WI, 53706, USA.

*Corresponding author: Tel: 920-743-5406, Fax 920-743-1080, email: nr6jb@ars-grin.gov

Additional Key Words: germplasm, Solanum andigenum ABSTRACT

The Association of Potato Intergenebank Collaborators (APIC) produced a global inventory of wild potato genetic resources that is available on the Internet (www.potgenebank.org\ipd). This database shows that, in many cases, several genebanks have samples of the progeny from a single original germplasm collection. The assumption has been that these samples are genetically equivalent, so all the characterization and evaluation data gathered on a seedlot from one genebank can be applied to all the other "duplicate" seedlots in other genebanks. This assumption was tested by comparing 25 pairs of reputed duplicates in the VIR (St. Petersburg, Russia) and US (Sturgeon Bay, USA) potato genebanks with RAPDs. In 23 of 25 cases, reputed duplicates among genebanks had significantly less similarity than replicate samples taken from a single population. The average genetic similarity of reputed duplicates was 93%, and the lowest was 81%. Thus, users of germplasm should be aware that reputed duplicate accessions from these genebanks may not be genetically identical.

INTRODUCTION

The potato combines status as a major world crop, high input costs and susceptibility to diseases and pests, high quality demands, and an unusually wide array of closely related wild species that can be crossed with relative ease to the cultivated forms (Hanneman, 1989). This situation makes the use of exotic germplasm for genetic improvement of the crop very attractive. World potato genebanks have the responsibility of collecting, classifying, preserving, evaluating and distributing these resources. Since 1990, these genebanks have been participating in a formal network to exchange information and techniques and work on problems of mutual interest. A comprehensive database of passport and evaluation data has been synthesized for wild potato species. By matching collection numbers, it is evident that in many cases, individual germplasm populations (referred to as "accessions") are duplicated in more than one genebank (Huaman et al., 2000). It seems reasonable to assume that evaluation and characterization data collected at one genebank can be attributed to the matching accession at another genebank. However, differences in sampling of the population when it was split among genebanks and subsequent differences in seed multiplication technique introduce the possibility that reputed duplicates at different genebanks have diverged genetically. Human error in the form of mislabeling, mixing or mispollinating is also possible. This is exemplified by the study of Steiner et al. (1997) that revealed genetic differences in reputed duplicate oat collections maintained at several sites. This study was initiated to measure the similarity of some of the presumed duplicate potato accessions held both at the Vavilov Institute potato collection (VIR), St. Petersburg, Russia, and the US Potato Collection (NRSP-6),

Sturgeon Bay, WI, USA. To the authors' knowledge, it is the first of its kind comparing the genetic similarity of reputed duplicates in sister potato genebanks.

MATERIALS AND METHODS

Duplicate accessions were identified in the VIR and US collections. Of these, 35 were selected based on availability of seeds, and the fact that they had undergone seed multiplication at least once at each site after being received as samples of the original population that was split (Kiru and Sdvizhkova, 1999). Thus, each pair of samples tested was derived from seed increase progeny of different samples from the same original population. The identities of these materials are given in Table 1.

Lots of 100 seeds each were sent from VIR to the US collection at Sturgeon Bay, Wisconsin. Each of these and the corresponding US seedlot was sown in two replicates of 50 seeds each. Handling of the materials was done as identically as possible and at the same time. Seeds were submersed in 2,000 ppm GA_3 for 24 hours and dispersed over potting medium in 10 cm clay pots, then covered with a thin layer of Vermiculite. Before transplanting, the pairs were visually assessed for differences in germination, size of leaves, height and presence of albinos.

When seedlings were 3-5 cm tall, 27 of each replicate were transplanted to peat pots. Leaf tissue was sampled from each plant and bulked for DNA extraction. DNA was isolated from bulked fresh leaf tissue according to a procedure modified from that described in Williams et al. (1994). PCR amplifications were performed in 15 μ L reaction volumes as described in del Rio et al. (1997). Comparisons were based on an average of 137 unique bands. All clear bands generated were used to compare replicates and intergenebank samples within a given accession. The band or blank status of each DNA bulk was considered to be comparable to the presence or absence of a dominant allele at random loci. The statistic generated was genetic similarity (GS) calculated as the percent loci with matching band status. For each set of reputed duplicates, GS was calculated between each of the two pairs of replicates (rep GS), and between samples from different genebanks.

The assumption that the distribution of observed rep GS fit the binomial distribution (p=0.998, n=137) was tested by Chi².

An individual observation must have a frequency of no more than about 0.002 in order to *not* occur at least once in a sample of 25 with p<=0.05. Thus, we calculated the GS level expected to occur at frequency <=0.002 in the observed rep GS distribution (p= 0.998, n=137) using the standard binomial formula. This was set as the p<=0.05 critical (statistically significant) level for any single observation of GS between genebank samples.

RESULTS

Seedlings of VIR origin tended to have larger leaves, be taller and contain albinos. Eight of the VIR accessions did not germinate at all. These differences were not quantified, but because replicates were always very similar, they probably represent real seedlot effects. The overall effect of the source from which seedlots originated (VIR or US) could be measured by Chi^2 tests against an expectation that each genebank's seedlot would be judged superior an equal number of times by chance if no real differences existed. In this way, the superiority of VIR seedlots for leaf size and superiority of US seedlots for >0% germination were significant at p #0.05.

Because of poor germination in either of the seedlots, only 25 of the originally-planted 35 pairs could be adequately compared using RAPDs.

Table 1 shows the GS among replicates and between genebank samples for each accession. GS of replicates averaged 99.8%. This indicates that the technique used generated very consistent RAPD profiles of these populations, providing very high resolution among treatments.

It was found that the distribution of GS within replicates was very similar to expectations for a binomial distribution where p = 0.998 (Chi² *probability* = 92%). This suggests that variation of rep GS was well explained by random effects, i.e., there is no reason to suspect that detection of certain bands was more or less efficient in different accessions.

A GS of 0.975 or less has $p \le 0.05$ of occurring in a random sample from the observed rep GS distribution. Thus, any GS between reputed duplicate genebank samples ≤ 0.975 was considered statistically significant. All but two of the 25 comparisons of reputed duplicates from different genebanks had GS this low or lower (Table 1).

DISCUSSION

Visual assessments of seedlings before transplanting suggested differences in the physiological status of these duplicate populations. The observation of albinos in only the VIR sample of population 33 is obviously a genetic difference, but probably not of the type that would be detected by RAPDs in this experiment. It is likely that the US sample also contains the recessive albino allele, but perhaps at a lower frequency, such that none of the observed segregants were nulliplex. This illustrates the fact that RAPDs used here on bulks did not detect possible changes in allele frequencies except when the allele detected as the RAPD band was completely lost. Thus, RAPDs detected only extreme changes among the genebanks' samples in the form of alleles lost from one of the paired populations.

The observed distribution of 50 rep GS fits a binomial distribution for p=0.998, n=137 quite well. But because binomial distribution variances are not symetrical around this estimated hypothetical population mean, the best estimate of the true population p of replicate GS is slightly lower than 0.998. This consideration slightly lowers the critical limit for significance, but not enough to change declarations of significance of any of the GS of pairs of duplicate genebank samples.

These populations are expected to be particularly vulnerable to genetic changes. Most of the accessions tested are *Solanum tuberosum* ssp. *andigena*, a taxon whose populations were found by Hosaka and Hanneman (1991) to exhibit particularly high seed protein variability. This implies genetic heterogeneity within populations, the basis of vulnerability to genetic drift.

One objection to using bulk DNA samples is based on the contention that bands present in a small proportion of plants in the bulk will not be detected (Gilbert et al., 1999; Divaret et al., 1999). However, our previous work using very heterogeneous species indicates that even bands present in only one plant in a 24-plant bulk are nearly always detected (del Rio and Bamberg, 1998). Others have also reported efficient detection in bulks (Tinker et al., 1994; Williams et al., 1993).

There are several reasons why the ability to detect low frequency bands is not an unqualified advantage. Such bands are very prone to sampling error unless a large total number of plants are sampled. Thus, ironically, more sensitive detection of low frequency bands may result in an overall loss of resolution. Also, concern for detecting bands at frequency lower than 1/20 seems inconsistent with the fact that no more than 20 plants are used for seed multiplication at these genebanks. Also, if bulking reduced minor band detection, the polymorphic bands analyzed here would tend to be the ones at higher frequency in the populations and *less* susceptible to loss. Thus, the differences observed reflect the detection of more extreme changes than if the use of truly random polymorphic markers had been ensured. Finally, the reader should bear in mind that the differences detected here are with respect to random DNA markers, not traits of practical value. One might argue that differences observed in random polymorphic DNA overestimate the vulnerability of most *useful* traits since such traits tend not to be conferred by alleles at low frequencies. This is a reasonable assumption to the extent that traits conferring natural fitness for the plant also match the desires of humans with respect to cultivation (which they sometimes do-- e.g., disease resistance, fertility).

Records were not available as to the number of serial increases separating the tested lots among genebanks, so a possible relationship between this and degree of differentiation could not be tested. No tests of differentiation between generations *within* a genebank were made in this experiment for comparison. However, previous work has shown that similarity between seed increase generations average about 96% when only polymorphic bands are considered (del Rio et al., 1997), and that about 2/3 of total bands in these types of materials can be expected to be monomorphic (Bamberg et al., 1999). So, the average GS of generations within the same genebank would be estimated at nearly 99% (not significant) compared to the average GS of 93% detected here for populations in different genebanks.

Although the GS of duplicates was relatively high (average >93%), most of the comparisons of reputed duplicate samples held in the VIR and US potato genebanks exhibited a statistically significant degree of genetic differentiation. The cause and specific practical impact of this is beyond the scope of this experiment. However, these results serve to apprise breeders, curators and other potato germplasm researchers of the fact that samples of reputed duplicate accessions from these genebanks may not be genetically identical.

COLLECTO		VIR	US	YEA	VIR	US			GS
R'S	SPECIES	CODE	CODE	R	SEEDLOT	SEEDLOT	GS	GS	between
							within-	within-	
NUMBER	(Solanum)	(VIR)	(PI)	SPLIT	YEAR	YEAR	US	VIR	genebanks*
FCE 104	chacoense	21845	197760	1989	1993	1994	0.993	1.000	0.916
OKA 5341	chacoense	21323	472819	1987	1992	1996	0.993	0.993	0.933
COR 14283	demissum	19075	161366	1987	1992	1996	1.000	1.000	0.993 ns
	guerreroens								
COR 14342A	e	21404	161727	1987	1991	1992	1.000	1.000	0.940
CCC 122	phureja	15246	225674	1977	1991	1996	1.000	1.000	0.974
CCC 131	phureja	15247	225675	1965	1996	1989	1.000	1.000	0.960
CCC 143	phureja	8361	225681	1969	1992	1990	1.000	1.000	0.969
CCC 256	phureja	5949	225689	1965	1984	1966	1.000	0.984	0.912
CCC 130	phureja	16579	225695	1969	1997	1975	1.000	1.000	0.968
GND 63	stenotomum	15286	234015	1977	1992	1990	1.000	1.000	0.966
CPC 1673x	andigena	4712	205623	1962	1973	1994	0.992	1.000	0.883
SMI 504	andigena	5801	214442	1957	1994	1994	0.993	1.000	0.941
CCC 61	andigena	5806	225633	1962	1990	1992	1.000	0.993	0.884
CPC 1464	andigena	4715	230457	1962	1993	1994	1.000	1.000	0.904
OCH 1226	andigena	5820	230499	1962	1990	1987	1.000	1.000	0.935
GND 61	andigena	5836	233989	1962	1990	1994	1.000	1.000	0.930
GRA 97-2	andigena	5847	243343	1962	1984	1991	1.000	0.990	0.808
CCC 4	andigena	19366	243361	1982	1992	1991	1.000	1.000	1.000 ns
CCC 44	andigena	18945	243372	1981	1989	1994	1.000	1.000	0.972
CCC 114	andigena	19367	243384	1962	1990	1994	1.000	1.000	0.929
CCC 210	andigena	5885	243409	1962	1997	1994	1.000	1.000	0.930
CCC 320	andigena	17165	243429	1978	1984	1994	1.000	0.992	0.922
CCC 425	andigena	5912	243438	1962	1997	1986	0.993	1.000	0.947
COR C.132	tuberosum	10487	245935	1971	1986	1997	0.992	1.000	0.858
COR C.133	tuberosum	10488	245937	1971	1986	1978	1.000	1.000	0.922
						Average:	0.998	0.998	0.932

*All <= 0.975 are significant at p<=0.05