1 Genetic Resources and Crop Evolution, Vol 52 Issue 2, March, 2005. P. 145-149.

2 3

4 New sources of resistance to race Ro1 of the Golden

5 **nematode** (*Globodera rostochiensis* Woll.) among

6 reputed duplicate germplasm accessions of *Solanum*

tuberosum subsp. *andigena* in the VIR (Russian) and US
 Potato Genebanks

8 9

10 Stepan Kiru¹, Svetlana Makovskaya², John Bamberg^{3*} & Alfonso del Rio⁴

¹N. Vavilov Research Institute of Plant Industry (VIR), B. Morskaya str. 42, St. Petersburg,

- 12 190000, RUSSIA; E-mail: step_kiru@imail.ru
- 13 ²All Russian Plant Protection Institute, Podbelskoe shosse 3, Poushkin, St. Petersburg 196608,
- 14 RUSSIA
- ³USDA, Agricultural Research Service, US Potato Genebank, 4312 Hwy 42, Sturgeon Bay, WI 54235 USA.
- 16 (*Author for correspondence; E-mail: nr6jb@ars-grin.gov)
- ⁴University of Wisconsin-Madison, Department of Horticulture, 1575 Linden Drive, Madison, WI 53706 USA.
- 18

19 Key Words: genebank, Globodera rostochiensis, nematode, potato, Solanum tuberosum

- 20 subsp. andigenum, Solanum andigena
- 21
- 22 *Abbreviations*:
- 23 USPG: US Potato Genebank (see Bamberg's affiliation)
- 24 PCN: Golden potato cyst nematode, *Globodera rostochiensis* Woll.
- 25 RAPD: Random Amplified Polymorphic DNA
- 26
- 27

28 Abstract

29

30 Cultivated Solanum tuberosum subsp. andigena is well known as a rich

31 source of valuable traits for potato breeding, especially for resistance to

32 diseases and pests. The Potato cyst nematode, *Globodera rostochiensis*

33 Woll., is considered to be one of today's most serious hindrances to potato

34 production in Europe and North America. Thus, the breeding of new

- cultivars that have resistance to PCN is of great importance. The USPG
- 36 (USA) and VIR (Russian) potato genebanks, as well as others, maintain
- 37 many samples of primitive cultivated and wild potato species originating
- 38 from Latin America. Many of these samples are assumed to be genetically
- 39 duplicate because the material in both genebanks came from the same
- 40 original source. A joint investigation of new genotypes of subsp. *andigena*
- 41 forms resistant to Potato Cyst Nematode (PCN) was carried out on samples
- 42 of subsp. *andigena* at VIR with reputed duplicate samples at USPG. After

careful screening, 14 samples which possessed resistance to PCN were 43 identified. A high level of this resistance was transmitted to sexual progeny 44 at a high frequency for all of the selections. Eleven of the accessions found 45 to be resistant have reputed duplicates in USPG that were not previously 46 known to be resistant. Thus, this research not only broadens the choice of 47 48 parents available for resistance breeding, but identifies model materials for future research testing the parity of PCN resistance among reputed duplicate 49 50 samples in the two genebanks.

51

52 Introduction

53 Potato Cyst Nematode continues to inflict significant damage on 54 potato production in some Eastern European countries. Control is very 55 difficult and expensive because PCN lives and overwinters in soil where 56 chemical control is difficult and expensive. Thus, the best method known 57 for controlling PCN is to create potato cultivars with genetic resistance.

A practical method of breeding potatoes with resistance became possible after the work of C. Ellenby (1954), who first began to evaluate the potato germplasm in the Commonwealth Potato Collection (CPC) in the UK. He was the first to find resistance to nematodes in *S. tuberosum* subsp. *andigena*, a tetraploid species cultivated in Latin America. Resistant accessions were CPC 1673, 1685, 1692, and 1595.

In the decades following, further investigations were carried out in different countries (Rothacker and Stelter 1957, Ross 1986) regarding the nature of resistance in *subsp. andigena*. An active form of immunity was found in which larvae hatch on roots, but are unable to complete the cyst development cycle.

Resistance to pathotype Rol in *subsp. andigena* is determined by a single dominant gene, H1 (Cole and Howard 1957, Rothacker and Stelter 1957, Toxopeus and Huijsman 1952 & 1953, Huijsman 1955, Huijsman 1960). However, resistance genetics may be much more diverse (Ross 1969). Resistance to other nematodes has also been derived from *subsp. andigena* (Brodie et al. 1991).

Resistance from the H1 gene has been incorporated into several
commercial varieties (e.g., Plaisted et. al 2001) that are available as parents
for breeding. Germplasm with resistance to multiple races of PCN has also
been developed (Brodie et al. 2000).

During the last three decades more than 40 samples possessing
resistance to PCN were discovered among the collection of 2,690 *subsp. andigena* accessions at the N. Vavilov Research Institute (VIR)(Kiru and

82 Sdvizhkova 1999). However, of the approximately 850 accessions of *subsp*.

andigena at the US Potato Genebank (USPG), only 9 have been reported to
be resistant (Hanneman and Bamberg 1987, Bamberg et al. 1994).
Identifying a broader array of resistance sources opens the door for research

to determine if useful variation in Ro1 resistance is present in thesematerials.

88 The USPG and VIR potato genebanks, as well as others, maintain many samples of primitive cultivated and wild potato species originating 89 from Latin America (Hijmans and Spooner 2001). In many cases, 90 genebanks have reputed duplicates (Huaman et al. 2000). Such accessions 91 92 originated from the same initial source population and are identified as being the same material, so evaluation data from one genebank is often attributed 93 94 to the duplicated sample in other genebanks. Such sharing of evaluation data across genebanks is a great benefit to breeders since it lessens the need 95 for duplicate screening. The duplicate sample within a breeder's own 96 country is also much more readily accessible, since quarantine testing of 97 potato germplasm from other countries is usually required. However, since 98 99 duplicate samples have been stored and propagated sexually under different conditions, they may not be true duplicates in the genetic sense. Indeed, 100 significant differences in the presence of DNA markers have been 101 demonstrated for subsp. andigena from VIR and USPG (Bamberg et al. 102 2001). 103 The main objective of this study was to screen accessions from the

The main objective of this study was to screen accessions from the VIR *subsp. andigena* collection for resistance to PCN to expand the diversity of parental material available for use in resistance breeding (Howard et al. 1970). In addition, since the accessions tested had reputed duplicates in the USPG, finding resistance would identify materials in USPG with potential resistance which would serve as a model system for testing the parity of reputed duplicates with respect to expression of an economic trait.

112

113 Materials and Methods

The evaluation was conducted at VIR using 115 of the 144 subsp. 114 andigena accessions in the VIR potato genebank with reputed duplicates in 115 USPG (Bamberg et al. 1996). The 115 seed populations tested in this 116 117 experiment included 34 different forms originating in Argentina, Peru, Bolivia, Colombia, Mexico and Ecuador. Plants were evaluated for 118 resistance to PCN race Ro1 after artificial infection. Inheritance of 119 resistance was then tested in the progeny of the selected tuberlings. 120 121 The plant materials were evaluated in a greenhouse with 14 h light 122 (2000 lux) at 20-23°C. They were grown in pots with a diameter of 10 cm.

Each pot was filled with soil, and infected with 500 cysts with viable larva. 123 Each of the 115 populations was represented by 5 tuberlings in the initial 124 evaluation. Accessions were considered resistant only if all 5 clones were 125 resistant. In this way, 14 accessions were found to be resistant. Clones 126 within each resistant accession were selfed and the seeds bulked. Then, 30 127 128 of these seedling progeny were tested again by the same method. The susceptible cultivar Nevsky and its self progeny were used as susceptible 129 130 controls in the initial and progeny tests, respectively. Finally, the 14 selected clones were crossed with susceptible subsp. tuberosum cultivars 131 (Table 3), and F_1 seedling progeny were also evaluated by the same method. 132

The presence of root cysts was visually detected on the entire root ball after two months. Plants were classified as resistant if the number of viable cysts they produced were less than 2, susceptible if 2-50 cysts were produced, and very susceptible if more than 50 cysts were produced.

137

138 **Results and Discussion**

Table 1 lists by country of origin, the accessions with plants 139 determined to be resistant (less than two viable cysts produced) in the initial 140 141 test. Five different South American countries and Mexico are represented, 142 showing that genotypes possessing resistance to PCN may be found not only among the Bolivian and Peruvian forms of *subsp. andigena*, as is sometimes 143 assumed (Howard et al. 1970) but also from Argentina, Mexico, and 144 Colombia. The Argentine samples examined that were found to be resistant 145 146 confirm the assumption of Brücher (1954) that there is a high probability of 147 finding resistant forms among wild and cultivated potato species originating in any provinces of Argentina infected by the nematode. 148

Our results do not support the conclusions of some authors (Kameraz
and Ponin, 1974) that diversity in the number of *G. rostochiensis* resistant
forms of subsp. *andigena* is limited.

The result of many tests over three years shows that subsp. and igena 152 is a rich source of race Ro1 PCN resistant genotypes useful for breeding. Of 153 the 115 screened samples, 14 (about one-eighth) expressed strong resistance. 154 A high proportion of self seedlings derived from clones of these 14 resistant 155 accessions were also resistant (Table 2). None of the self seedling progeny 156 listed in Table 2 are less than 50% resistant at $p \le 0.05$. Resistance of the 157 self progeny not only confirms the resistance of parental clones from the 14 158 159 selected accessions, but demonstrates that the inheritance of resistance is likely simple and dominant. When 10 of the 14 selected clones were 160 crossed with susceptible cultivars, 65% of the progeny were resistant (Table 161 3). 162

One of the accessions determined to be highly resistant was PI 205624 / VIR 23696. This result might be expected since this accession is a hybrid of CPC 1673. Samples from PI 205624 / VIR 23696 and PI 230457 / VIR 23704 were reported resistant in both genebanks (Table 2), although reputed duplicate samples of these accessions in the two genebanks had only about 90% of (Random Amplified Polymorphic DNA) RAPD bands in common (Bamberg et al. 2001).

This screening identified new resistance to PCN in *subsp. andigena* from various countries. Particularly interesting is the discovery of numerous resistant accessions from Mexico, from which no resistant accessions have been previously reported. Eleven of the accessions found to be resistant have reputed duplicates in USPG that were not previously known to be resistant.

The work described here does not prove that the new sources of PCN resistance possess any breeding value beyond that already widely deployed in the H1 gene. However, a search for useful allelic diversity at the H1 locus or other potentially useful modifier loci would logically be conducted within germplasm in which resistance had naturally evolved. Our work identifies such germplasm for future breeding and genetic studies.

182 Thus, this research not only potentially broadens the choice of parents 183 available for resistance breeding, but identifies model materials for future 184 research to test the parity of PCN resistance among reputed duplicate 185 samples in the two genebanks.

186

187 Acknowledgments

The authors express their thanks to Dr. Guskova L.A of the Laboratory of
Nematodes, All Russian Plant Protection Institute, for assistance in
methodology of screening.

191

192 **References**

- Bamberg, J. B., S. D. Kiru & A. H. del Rio, 2001. Comparison of reputed
 duplicate populations in the Russian and US potato genebanks using
 RAPD markers. Am J. Potato Res. 78:365-369.
- Bamberg, J.B., M.W. Martin, J.J. Schartner, & D.M. Spooner, 1996.
- Inventory of tuber-bearing *Solanum* species. Potato Introduction
 Station, NRSP-6. Sturgeon Bay, Wisconsin, USA.110 p.
- Bamberg, J. B., Max W. Martin & J. J. Schartner, 1994. Elite selections of
 tuber-bearing *Solanum* species germplasm. Univ. of Wisc. Press. 67 pp.

201 202 203	 Brodie, B.B, R.L. Plaisted & M. M. Scurrah, 1991. The incorporation of resistance to <i>Globodera pallida</i> into <i>Solanum tuberosum</i> germplasm adapted to North America. Am J. Potato Res. 68:1-11.
204	Brodie, B.B., M. M. Scurrah, & R. L. Plaisted, 2000. Release of germplasm
205	resistant to multiple races of potato cyst nematodes. Am. J. Potato Res. 77:207-209.
206 207	Brücher, H., 1954. Cytologische und okologische Beobachtungen an
207	nordargentischen <i>Solanum</i> -Arten der Section Tuberarium. Teil I. Die
208 209	Wildkartoffelarten der Aconquija-Gebirge. "Zuchter", Bd. 24, 10.
209	Cole, C.S. & Howard, H.W, 1957. The genetics of resistance to potato root
210	eel worm of <i>Solanum tuberosum</i> , <i>subsp. andigena</i> clone CPC 1690.
211	Euphytica 6: 242-246.
212	Ellenby, C., 1954. Tuber forming species and varieties of the genus <i>Solanum</i>
213	test of resistance to the potato root eel worm (<i>Heterodera rostochiensis</i>
215	Woll.). Euphytica 3:195-202.
216	Hanneman, R.E. Jr., & J.B. Bamberg, 1987. Inventory of tuber- bearing
217	Solanum species. Bulletin 533 of Research Division of the College of
218	Agriculture and Life Sciences, University of Wisconsin-Madison, 216
219	pp.
220	Hijmans, R. J. & D. M. Spooner, 2001. Geographic distribution of wild
221	potato species. Am. J. Botany 88:2101-2112.
222	Howard, H.W., G.J. Cole & J.M. Fuller, 1970. Further sources of resistance
223	to Heterodera rostochiensis Woll. in the andigena Potato. Euphytica 19:
224	210-216.
225	Huaman, Z., R. Hoekstra, & J. Bamberg, 2000. The intergenebank potato
226	database and the dimensions of available wild potato germplasm. Am J.
227	Potato Res. 77:353-362.
228	Huisman, C.A., 1955. Breeding for resistance to potato root eelworm. II.
229	Data on the inheritance in ssp. and igena-tuberosum crosses obtained in
230	1954. Euphytica 4:130-140.
231	Huisman, C.A., 1960. Some data on the resistance against the potato root-
232	eelworm, Heterodera rostochiensis (Woll.) in Solanum kurtzianum.
233	Euphytica 9: 185-190.
234	Kameraz, A.Y. & I.Y. Ponin, 1974. Initial material and prospects of its use
235	in potato breeding for resistance to <i>Heterodera rostochiensis</i> Woll. Bull.
236	of Appl. Bot., Genet. and Plant Breeding. VIR, Leningrad. Vol.53,
237	fasc.1:199-215.
238	Kiru, S.D. & V. P. Sdvizhkova, 1999. Katalog mirovoi collectzii VIR N 707
239 240	- Kartofel - Culturny vid <i>Solanum andigenum</i> Juz. et Buk. Vavilov
240	Institute (VIR, St. Petersburg, Russia) publication No. 707. 22 pp.

- 241 Plaisted, R.L., D.E. Halseth, B.B. Brodie, S.A. Slack, J.B. Sieczka, B.J. Christ, K.M. Paddock & M.W. Peck, 2001. Eva: a midseason golden 242 nematode- and virus-resistant variety for use as tablestock or chipstock. 243 Am. J. Potato Res. 78:65-68. 244 245 Ross, H., 1969. Züchtung von Kartoffelsorten mit resistenz genen 246 Heterodera rostochiensis Woll. Mitteilungen aus der Biologische Bundesanstalt für Land und Forstwirtschaft 136:59-64. 247 Ross, H., 1986. Potato breeding-problems and perspectives. Advances in 248 plant Breeding, Supplement 13 to Journal of Plant Breeding. M. Ross ed. 249 250 Paul Parey, Berlin-Hamburg. Rothacker D. & H. Stelter, 1957. Beitrage zur Resistenzzuchtung gegen den 251 252 Kartoffelnematoden (Heterodera rostochiensis Woll.). II. Untersuchungen über die Vererburg der Nematodenresistenz bei den 253 Arten S. vernei Bitt. et Witm. and S. tuberosum L. ssp. andigenum (Buk) 254 Hawkes. Züchter, 27, N7. 255 Toxopeus H.J. & C.A. Huijsman, 1952. Genotypical background of 256 257 resistance to Heterodera rostochienis in Solanum tuberoum, ssp, andigenum. Nature 170:1016. 258
- Toxopeus, H.J. & C.A. Huijsman, 1953. Breeding for resistance to Potato
 root eel worm. Euphytica 2:180-186.

Table 1. Country of origin of selected *S. ssp. andigena* Juz. et Buk. accessions resistant to *G. rostochiensis* race Ro1

Origin	N° of accessions	N° of resistant	Percent
	screened	accessions	
Argentina	23	2	9
Bolivia	17	2	12
Colombia	20	1	5
Ecuador	9	0	0
Mexico	19	5	26
Peru	22	4	3
Total	115	14	12

PI number (USPG)	K number (VIR)	Collector Number	Country of origin	N° of seedlings tested	Number of resistant (R), susceptible (S) and very susceptible (VS) seedlings ^b		
					0-1cysts	2-50 cysts	>50cysts
					(R)	(S)	(VS)
160215	23688	COR 14220A	MEX	50	24	26	-
161136	22034	COR 14261	MEX	50	27	23	-
161683	23691	COR 14434	MEX	50	19	31	-
161716	21655	COR 14380	MEX	50	24	19	7
195162	23694	CPC 300	PER	50	34	16	-
205624*	23696	CPC 1673 ^a	BOL	50	39	11	-
214427	23699	SMI 454	PER	50	32	18	-
214430	23700	SMI 460	PER	50	37	13	-
230457*	23704	CPC 1464	PER	50	33	8	9
233982	21665	GND 16	BOL	50	28	22	-
243415	17165	CCC 249	COL	50	19	27	4
243430	17172	CCC 330	ARG	50	32	18	-
246516*	23719	COR P204	ARG	50	30	20	-
285017	21683	UGN 1098	MEX	50	26	24	-
Average					28.9	19.7	1.4
Control	Nevsky		RUS	50	-	6	44

Table 2. Segregation of resistance in seedlings derived from self pollination
of resistant *S. ssp. andigena* clones

269

270 ^ahybrid seed

^bNone significantly less than 50% resistant at p = <= 0.05

* Reported as resistant in USPG screening records (see Hanneman and Bamberg, 1987

and USPG homepage: http://www.ars-grin.gov/nr6).

274

Table 3. The inheritance of resistance to *G. rostochiensis* Ro1 in progeny of
 ten selected *S. ssp. andigena* forms crossed with susceptible cultivars

- 277
- 278

F ₁ cross ^a	Total N° of seedlings	Segregation of resistan seedlings ^b		
		S	R	%R
Lugovskoy x PI 161893	94	22	72	76
Romashka x PI 214427	87	25	62	71
Nevsky x PI 160215	79	20	59	74
Rozhdestvenskii x PI 195162	87	26	61	70
Orbita x PI 205624	89	29	60	67
PI 214430 x Zarevo	83	17	66	79
PI 230457 x Peterburgsky	77	18	59	76
PI 246516 x Gybrydny14	90	41	49	54
Udacha x PI 243430	82	19	63	76
Peterburgsky x PI 233982	95	27	54	70
Average				65
Nevsky x PI 243384*	97	97	0	0

279

^a Resistant parent given as USPG germplasm number. See Table 2. for VIR number

281

^bS= susceptible (>2 viable cysts), R= resistant (0-1 viable cysts).

283

284 *Control cross of susceptible cultivar Nevsky x susceptible *Solanum* subsp. *andigena*