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     The occurrence of polyploid series in plants has long held 
interest to plant systematists and evolutionists. A wide range of 
effects has been attributed to polyploids relative to their diploid 
progenitors ( Stebbins, 1971 ;  Grant, 1981 ;  Levin, 2002 ;  Soltis 
et al., 2004 ). Polyploids are thought to possess transgressive 
physiological characters such as higher stress and disease toler-
ances, allowing them to occupy new ecological niches and ex-
pand their geographic ranges ( Wu et al., 2006 ).  Stebbins (1971)  
conceived polyploids to be  “ general-purpose genotypes ” . They 
often possess increased size of certain organs; for example, 
large seeds from polyploids often produce vigorous seedlings, 
which aids in establishment and stabilization in new habitats. 
 Hijmans et al. (2007)  determined the geographical and environ-
mental correlates of ploidy for the wild taxa of  Solanum  sect. 
 Petota , containing wild and cultivated potato. They found multiple 
cytotypes to exist in 21 wild species. Diploids occupy a larger 
geographical area than polyploids, but diploid and tetraploid 

species have similar range sizes, and the two species with by far 
the largest range of sizes are tetraploids. 

 Polyploidy is asymmetrically distributed in the genus  Sola-
num , which contains ca. 1500 species ( Bohs, 2007 ) and is mostly 
confi ned to the sects.  Petota  and  Solanum , with scattered poly-
ploids in subgenus  Leptostemonum  and a few other scattered 
 Solanum  ( Hunziker, 2001 ). The taxonomy of wild and culti-
vated potatoes ( Solanum  sect.  Petota ) is complicated by sexual 
compatibility among many species, interspecifi c hybridization, 
introgression, a mixture of sexual and asexual reproduction, 
auto- and allopolyploidy, possible recent species divergence, phe-
notypic plasticity, and consequent great morphological similar-
ity and diffi culty in defi ning and distinguishing species ( Spooner 
and van den Berg, 1992 ;  Spooner, 2009 ). These many compli-
cating biological factors have led to great differences among 
taxonomic treatments of both the wild and the cultivated 
species. The latest taxonomic estimate in sect.  Petota  is ca. 
100 wild species ( Spooner, 2009 ) and four cultivated species 
( Spooner et al., 2007 ) divided into three clades ( Spooner et al., 
2008 ;  Rodr í guez et al., 2009 ;  Rodr í guez and Spooner, 2009 ). 
This differs from the widely used taxonomy of  Hawkes (1994) , 
in which 228 wild species and seven cultivated species are di-
vided into 19 tuber-bearing taxonomic series. 

 Using known crossing data, morphological analyses of 
 Huam á n and Spooner (2002) , and microsatellite data,  Spooner 
et al. (2007)  provided a reclassifi cation of the cultivated pota-
toes into four species, with two groups defi ned using the 
 International Code of Nomenclature for Cultivated Plants  
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   •   Premise of the study : The taxonomy of cultivated potatoes has been highly controversial, with estimates of species numbers 
ranging from 3 to 17. Ploidy level has been one of the most important taxonomic characters to recognize cultivated potato spe-
cies, containing diploid (2 n  = 2 x  = 24), triploid (2 n  = 3 x  = 36), tetraploid (2 n  = 4 x  = 48), and pentaploid (2 n  = 5 x  = 60) cultivars. 
We tested the environmental associations of different ploidy levels in cultivated potato species that traditionally have been 
recognized as Linnaean taxa to see whether, in combination with prior morphological, molecular, and crossing data, some of 
the ploidy variants can be recognized as distinct taxa. 

  •   Methods : We summarize 2780 chromosome counts of landrace cultivated potatoes, provide georeferences to 2048 of them, and 
analyze these data for 20 environmental variables at 10-min resolution using the randomForest algorithm to explore associa-
tions with taxa and ploidy variants. 

  •    Key results : Except for the  S. tuberosum  Chilotanum Group and extreme northern and southern range extensions of the Andi-
genum Group, it is impossible to fi nd distinct habitats for the ploidy variants of the  S. tuberosum  Andigenum Group. 

  •    Conclusions : Our distributional and ecological data, in combination with prior results from morphology, microsatellites, and 
crossing data, provide yet additional data to support a major reclassifi cation of cultivated potato species. A rational, stable, and 
universally accepted taxonomy of this major crop plant will greatly aid all users of wild and cultivated potatoes from breeders 
to gene bank managers to ecologists and evolutionary biologists.  
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  Soltis et al. (2007)  argued that autopolyploid cytotypes within 
a species should be formally named and considered to represent 
species distinct from the diploid progenitor if they fulfi lled a 
range of biological, taxonomic, diagnostic, apomorphic, and 
evolutionary criteria. Compared to the diploid parent, such rec-
ognized autopolyploid species should possess distinct geographic 
ranges, be distinguished morphologically, and be largely repro-
ductively isolated (via a diversity of mechanisms that could 
include reproductive or ecological isolation). Cytologically, 
tetraploid landraces of  S .  tuberosum  are autopolyploids ( Irikura, 
1976 ;  Gavrilenko, 2007 ), so these criteria should be applicable 
here, although segmental allopolyploidy has been proposed for 
other cultivated polyploids:  S. chaucha  (= triploid cytotypes of 
 S. tuberosum  Andigenum Group),  S. curtilobum , and  S. juzep-
czukii  ( Matsubayashi, 1991 ). 

 The purpose of our study is to provide a geographical and 
ecological analysis of ploidy variants of cultivated potato and to 
use these results, in combination with prior morphological, 
crossing, and molecular data, to test alternative taxonomies of 
cultivated potato species. Potato is the fourth most important 
food crop worldwide ( FAO, 2009 ), and these results have tre-
mendous importance for the effi cient organization of gene bank 
accessions, for biogeographical and evolutionary studies, and 
for the use of genetic resources in breeding. 

 MATERIALS AND METHODS 

 Reports of chromosome numbers were obtained by searching the standard 
cytological indices ( Darlington and Janaki Ammal, 1945 ;  Delay, 1951 ;  Dar-
lington and Wylie, 1955 ,  1961 ;  Cave, 1958a ,  b ,  1959a ,  b ,  1960 ,  1961 ,  1962 , 
 1963 ,  1964 ,  1965 ;  Ornduff, 1967 ,  1968 ,  1969 ;  Federov, 1969 ;  Roitman et al., 
1969 ;  Moore, 1970 ,  1971 ,  1972 ,  1973 ,  1974 ,  1977 ;  Goldblatt, 1981 ,  1984 , 
 1985 ,  1988 ;  Goldblatt and Johnson, 1990 ,  1991 ,  1994 ,  1996 ,  1998 ,  2000 ,  2003 , 
 2006 ). We discovered other reports through cross referencing ( Table 1 ). Each 
report was verifi ed by checking the original publications cited therein. We ob-
tained data for  S. acaule  and  S. boliviense , two species involved in the hybrid 
origins of the cultivated species  S. ajanhuiri ,  S. curtilobum , and  S. juzepczukii  
from  Hijmans et al. (2007) . We omitted reports from abstracts of oral presenta-
tions, reports involving colchicine-induced polyploids and interspecifi c hy-
brids, and reports of accessions maintained at experimental stations. We also 
excluded reports of modern cultivars, so that only apparent landraces collected 
in Central or South America (not modern cultivars of potato) were considered 
in the analysis. 

 For each report, we summarized the species name recorded in the paper, the 
current name following the taxonomy of  Spooner et al. (2007) , the reference for 
the count, collector and number, collection date, country, state, region, locality, 
altitude, and latitude and longitude. In total, we analyzed seven classes: (1)  S. 
ajanhuiri , (2)  S. juzepczukii , (3)  S. curtilobum , (4)  S. tuberosum  Andigenum 
Group 2 x , (5)  S. tuberosum  Andigenum Group 3 x , (6)  S. tuberosum  Andigenum 
Group 4 x , (7)  S. tuberosum  Chilotanum Group, all are 4 x . For the latter, we 
mapped only the cultivars, not the apparent escapes from cultivation in the Cho-
nos Archipelago ( Contreras et al., 1993 ). When latitude and longitude were not 
provided, we determined these data when possible using maps and digital gaz-
etteers. Geographical coordinates were checked by overlay techniques as de-
scribed in  Hijmans et al. (1999) , by inspecting distribution maps for each 
species, and by looking for climatic outliers using DIVA – GIS ( Hijmans et al., 
2004 ). Our database is deposited online as Appendix S1 (see Supplemental 
Data online at http://www.amjbot.org/cgi/content/full/ajb.1000277/DC1). 

 Environmental data preparation   —     The records were annotated using global 
grids of 20 variables at 10-min resolution from the world climate database 
( Hijmans et al., 2005 ). We assessed mean values for 19 bioclimatic  “ niche vari-
ables ” : annual temperature, monthly temperature range, isothermality (mean diur-
nal range/temperature annual range, which quantifi es  “ hot ”  vs.  “ cold ”  regions), 
temperature seasonality (the difference between winter and summer temperature, 
measured as the coeffi cient of variance, CV   ×   100), maximum temperature of 
warmest month, minimum temperature of coldest month, temperature annual 

( Bricknell et al., 2009 ): (1)  S. tuberosum , with the Andigenum 
Group of upland Andean genotypes containing diploids, trip-
loids, and tetraploids and the Chilotanum Group of lowland tet-
raploid Chilean landraces, from which our modern cultivars 
were selected ( Ames and Spooner, 2008 ), (2) diploid  S. ajan-
huiri , formed by hybridization between diploid cultivars of the 
 S. tuberosum  Andigenum Group and the diploid wild species  S. 
boliviense  (=  S. megistacrolobum ), (3) triploid  S. juzepczukii , 
formed by hybridization between diploid cultivars of  S. tubero-
sum  Andigenum Group and the tetraploid wild species  S. 
acaule , and (4) pentaploid  S. curtilobum , likely formed by hy-
bridization between tetraploid forms of  S. tuberosum  Andige-
num Group and  S. juzepczukii . 

 These hybrid origins received further support from GBSSI 
sequencing data ( Rodr í guez et al., 2010 ) and from morphologi-
cal and microsatellite data ( Gavrilenko et al., in press ), except 
 S .  ajanhuiri  was not supported in the latter study, possibly due 
to misidentifi cations of a few accessions of  S .  ajanhuiri  used in 
that study.  Solanum acaule  and  S. boliviense  are frost-resistant 
wild species ( Hijmans et al., 2003 , in which  S. boliviense  is 
listed as  S. megistacrolobum ) and are thought to be responsible 
for frost resistance in  S. ajanhuiri ,  S. curtilobum , and  S. juzep-
czukii , allowing them to be grown at presumably higher altitude 
extremes than  S. tuberosum  ( Hawkes, 1990 ;  Ochoa, 1990 ). 

 All of the landrace cultivated potato species are indigenous 
to the South American Andes except the  S. tuberosum  Chilota-
num Group that is indigenous to the lowlands of south central 
Chile. The diploid, triploid, and tetraploid cultivars of the  S. 
tuberosum  Andigenum Group are widespread throughout north-
ern Colombia to central Bolivia. Tetraploid populations of this 
group extend slightly more north into western Venezuela and 
farther south into northern Argentina. In addition, tetraploid 
landraces of  S. tuberosum  have been cultivated by indigenous 
peoples in Mexico and Central America. These have been con-
sidered to be post-Colombian introductions of the  S. tuberosum  
Andigenum Group ( Ugent, 1968 ). However,  Zhang et al. (2010)  
found that seven of 20 landrace accessions of  S. tuberosum  
from Mexico and Central America possessed the 241-bp plastid 
DNA deletion in the  trnV-UAC/ndhC  intergenic region which 
is absent in 94% (or 95%) of the  S. tuberosum  Andigenum 
Group and present in 86% (or 81%) of the  S. tuberosum  Chilota-
num Group Chilean landraces, depending on the studies of 
 Hosaka (2004)  or  Spooner et al. (2007) , suggesting that land-
races from Mexico and Central America had multiple introduc-
tions from both the Andes and from lowland Chile. 

 Polyploidy has had tremendous signifi cance in the taxonomy 
and systematics of cultivated potatoes. Prior taxonomic systems 
of cultivated potatoes by  Lekhnovich (1971) ,  Bukasov (1978) , 
 Hawkes (1990) , and  Ochoa (1990 ,  1999 ) recognized from 7 to 
17 cultivated species as distinct Linnaean taxa ( McNeill et al., 
2006 ).  Dodds (1962) , in contrast, recognized three cultivated 
species with fi ve Groups in  S. tuberosum  (see table 2 of  Huam á n 
and Spooner [2002]  for a summary of alternative taxonomic 
systems and  Table 1  here for names recognized in the most 
widely used taxonomic system of  Hawkes [1990] ). Each former 
cultivated species name within these traditional taxonomies 
was partially defi ned by its ploidal level. It often is impossible 
to use morphology alone to consistently identify these former 
taxa ( Huam á n and Spooner, 2002 ;  Ghislain et al., 2006 ; 
 Gavrilenko et al., in press ), and identifi cations are frequently 
changed in gene bank collections when chromosome counts do 
not match expectations ( Spooner et al., 2005 ;  Ghislain et al., 
2006 ;  Gavrilenko et al., in press ). 
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diploid populations of the  S. tuberosum  Andigenum Group, case (b) whether  S . 
 juzepczukii  occupies an intermediate habitat of  S .  acaule  and diploid populations 
of the  S. tuberosum  Andigenum Group, and case (c) whether  S .  curtilobum  oc-
cupies an intermediate habitat of  S .  juzepczukii  and tetraploid populations of the 
 S. tuberosum  Andigenum Group. To this end, all accessions for each test were 
restricted to the latitude range of the hybrid: for case (a),  S .  ajanhuiri  (18),  S . 
 boliviense  (36), diploid Andigenum Group (144); for case (b),  S .  acaule  (381), 
 S .  juzepczukii  (73), diploid Andigenum Group (221); for case (c),  S .  curtilobum  
(42),  S .  juzepczukii  (73), tetraploid Andigenum Group (1138). The randomFor-
est results indicate whether the hybrid habitats can be predicted without error. 

 Altitude range   —     We tested whether  S .  ajanhuiri ,  S .  curtilobum , and  S . 
 juzepczukii  (group 1) occurred at signifi cantly higher altitude ranges than the  S. 
tuberosum  Andigenum Group (all ploidy variants together), using only acces-
sions in the same overlapping latitude ranges, using the one-sided Kolmogorov –
 Smirnoff test (in R). This nonparametric test compares both the location of a 
probability distribution and the shape. We used the violin plot ( Hintze and Nelson, 
1998 ) to visualize the results. A violin plot shows the density distribution of 
data. It is related to the box plot in that it provides a summary overview but 
gives more information about the distribution. 

 Northern and southern range extension of the tetraploid populations of 
the S. tuberosum Andigenum Group   —     We used the function importance in the 
randomForest algorithm to assess the relative importance of 20 variables that are 

range, temperature of wettest quarter, temperature of driest quarter, temperature 
of warmest quarter, temperature of coldest quarter, annual precipitation, precipita-
tion of wettest month, precipitation of driest month, precipitation seasonality 
(CV), precipitation of wettest quarter, precipitation of driest quarter, precipitation 
of warmest quarter, and precipitation of coldest quarter; we also assessed the ab-
solute values of latitude as a 20th variable. The absolute value of latitude is an 
indicator of daylength seasonality. 

 Environmental modeling: Do the environmental variables form niches cor-
responding to the species?   —     One common view of the ecological niche devel-
oped by  Grinell (1917 ; cited after  Morrison and Hall, 2002 ) is a set or range of 
environmental features that enable individuals to survive and reproduce. This idea 
was generalized by  Hutchinson (1957)  to the concept that a set of environmental 
factors describes the distribution of a species ( Morrison and Hall, 2002 ). Thus, 
environmental factors may be used to  “ profi le ”  a species. We used the random-
Forest library ( Liaw and Wiener, 2002 ) (in R;  R Development Core Team, 2010 ) 
to examine association of our seven classes to the 20 variables. The randomForest 
builds a set of regression trees. Each regression tree is used to predict the response 
variable. Using sampling with replacement, hundreds of trees are built, and a fi nal 
overall result is calculated. The algorithm calculates how reliably the distribution 
of a species can be predicted based on the variables, using a simple error rate. 

 Intermediate habitats for three cultivated hybrid species   —     We tested case 
(a) whether  S .  ajanhuiri  occupies an intermediate habitat of  S .  boliviense  and 

  Table  1. Reports of ploidy determination in cultivated potatoes. Numbers in parentheses are the actual total counts used in analysis. The numbers in 
boldface below Data sources for species  S. tuberosum  indicate chromosome counts of 24, 36, or 48. 

2 n  chromosome number

Species 24 36 48 60 Data sources

 Solanum ajanhuiri 28 (18)  Juzepczuk and Bukasov, 1929 ;  Rybin 1933 ;  Ochoa 1958 ,  1964 ; 
  Gavrilenko et al., in press 

 S. juzepczukii 83 (73)  Juzepczuk and Bukasov, 1929 ;  Rybin, 1933 ;  Ochoa, 1958 ,  1964 ; 
  Gavrilenko et al., in press 

 S. curtilobum 51 (42)  Juzepczuk and Bukasov, 1929 ;  Rybin, 1933 ;  Lamm, 1941 ;  Ochoa, 
 1958 ,  1964 ;  Gavrilenko et al., in press 

 S. tuberosum  Andigenum Group  a 562 (380) 227 (176) 2437 (1784)  24:   Juzepczuk and Bukasov, 1929 ;  Rybin, 1929 ,  1933 ;  Bukasov, 1937 ; 
  Sidorov, 1937 ;  Choudhuri, 1943 ,  1944 ;  Hawkes, 1944 ;  Lamm, 1945 ; 
 Ochoa, 1958 ,  1964 ;  Matsubayashi, 1962 ;  Jackson et al., 1980 ;  Bamberg 
et al., 1996 ;  Gavrilenko et al. in press ; NRSP-6 website  b  
  36:   Juzepczuk and Bukasov, 1929 ;  Rybin, 1929 ,  1933 ;  Vavilov, 1935 ; 
 Hawkes, 1944 ;  Lamm, 1945 ;  Ochoa, 1958 ,  1964 ;  Br ü cher, 1960 ; 
 Jackson et al., 1980 ;  Gavrilenko et al., in press  
  48:   Juzepczuk and Bukasov, 1929 ;  Rybin, 1929 ,  1933 ;  Juzepczuk, 
1937 ;  Sidorov, 1937 ;  Ratera, 1942 ,  1944 ;  Hawkes, 1944 ;  Lamm, 1945 ; 
 Ochoa, 1958 ,  1964 ;  Br ü cher, 1969 ;  Jackson et al., 1980 ;  Spooner et al., 
1994 ;  Bamberg et al., 1996 ;  Castillo and Spooner, 1997 ;  Salas et al., 
2001 ;  Gavrilenko et al. in press ; NRSP-6 website  b 

 S. tuberosum  Chilotanum Group  a 181 (131)  48:   Rybin, 1929 ,  1933 ;  Juzepczuk, 1937 ;  Sidorov, 1937 ;  Ratera, 1942 ; 
  Avanzi, 1949 ;  Br ü cher, 1966 ;  Lekhnovich, 1978 ;  Bamberg et al., 1996 ; 
 Gavrilenko et al., in press ; NRSP-6 website  b   
 96  (one count):  Ratera, 1942 

 a   Hawkes (1990)  recognized the following names (indented), which  Spooner et al. (2007)  and we recognize as synonyms.
 S. tuberosum  Andigenum Group diploids
  S. phureja  Juz. and Bukasov subsp.  phureja 
  S. stenotomum  Juz. and Bukasov subsp.  stenotomum 
  S. stenotomum  subsp.  goniocalyx  (Juz. and Bukasov) Hawkes
 S. tuberosum  Andigenum Group triploids
  S. chaucha  Juz. and Bukasov
 S. tuberosum  Andigenum Group tetraploids
  S. phureja  subsp.  estradae  (L. L ó pez) J. G. Hawkes
  S .  phureja  subsp.  hygrothermicum  (Ochoa) J. G. Hawkes
  S. tuberosum  subsp.  andigenum  Hawkes
 S. tuberosum  Chilotanum Group (all tetraploids)
  S. tuberosum  subsp.  tuberosum .
 b  See counts listed on the website of the United States Potato Genebank ( USDA, 2010 ).
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genum Group (an 88.8% error rate). (Case b) Of 74 populations of 
 S .  juzepczukii , nine are predicted as  S. acaule , 33 as  S. juzepczukii , 
and 32 as diploid  S. tuberosum  Andigenum Group (55.4% error 
rate). (Case c) Of the 44 populations of  S .  curtilobum,  only four 
are classifi ed as  S .  curtilobum , fi ve as  S .  juzepczukii , and 35 as 
tetraploid populations of  S. tuberosum  Andigenum Group (90.9% 
error rate). In summary, all results show both the hybrid potatoes 
and their parents to have similar habitats. 

 Altitude range   —      There is no signifi cant difference in altitude 
among six of the seven cultivated potato classes; only the  S. tu-
berosum  Chilotanum Group grows at a signifi cantly lower alti-
tude ( Fig. 2B ). 

 Southern and northern range extensions of tetraploid popu-
lations of the S. tuberosum Andigenum Group  —     The subset of 
tetraploid populations of the  S. tuberosum  Andigenum Group 
growing south of diploid populations (central Bolivia into north-
ern Argentina) can be clearly predicted; the predicted set has only 
one accession out of 87 that is misclassifi ed as a diploid popula-
tion of the Andigenum Group (error rate of 1.1%). The most im-
portant predictive variable is temperature seasonality (standard 
deviation   ×  100). The median value for tetraploid populations of 
the Andigenum Group is 414 (4.14  °  C) vs. 185 for the diploid 
Andigenum Group. High values of temperature seasonality indi-
cate high variability of temperatures, and low values indicate low 
variability or a more uniform climate. Thus, diploid cultivars of 
the  S. tuberosum  Andigenum Group are present in more uniform 
climates than the tetraploid cultivars. The northern range expan-
sion of the tetraploids into Venezuela and Mexico and Central 
America can be clearly classifi ed but with a slightly higher error 
rate (9%). For this expansion, the most important environmental 
variable to distinguish both geographic subsets is the precipita-
tion seasonality. Whereas diploid members of the Andigenum 
Group have a median value of 79 for precipitation seasonality, 
tetraploid populations north of the diploid populations have a 
median of 101. 

 Comparison of S. tuberosum Andigenum Group (all ploidy 
levels) and Chilotanum Group   —      These two groups can be 
clearly classifi ed without any error based on the niche variables. 
The most important distinguishing variable is the absolute value 
of latitude ( Fig. 3 ); the Andigenum Group has a median of 14  °   
latitude and the Chilotanum Group a median of 42  °   latitude. The 
niche variable isothermality is the second most important, monthly 
mean temperature range third, and altitude fourth ( Fig. 2B ). 

 Comparison of ecological niches of different S. tuberosum 
Andigenum Group ploidy levels   —      Within the overlapping lati-
tudinal range of the Andigenum Group, the overall prediction 
error rate is 27.4%. For diploid members of the Andigenum 
Group, the misclassifi cation reaches 54%, for triploid 71% and 
for tetraploid 11%. This indicates that the three ploidy levels 
cannot be reliably distinguished by ecological criteria within 
their area of sympatry. However, the tetraploids have been suc-
cessful in extending their ranges north and south of the main 
diploid distribution. 

 Richness analysis, coverage   —      The results show that the 
highest diversity of the seven cultivated classes is north and 
south of Lake Titicaca in the Bolivia – Peru border; a wider range 
of diversity is between 8  °   and 20  °   southern latitude ( Fig. 3 ). The 
smallest coverage is occupied by  S. ajanhuiri ,  S. juzepczukii , 

associated with the northern and southern range extension of the tetraploid popu-
lations of the  S. tuberosum  Andigenum Group north and south of the area where 
diploids and triploids occur. For this, we divided the tetraploid populations into 
three geographic areas: (1) Mexico and Central America, Venezuela; (2) Colom-
bia to central Bolivia; (3) southern Bolivia to northern Argentina. 

 Comparison of ecological niches of (1) different S. tuberosum Andigenum 
Group ploidy levels and (2) tetraploid populations of S. tuberosum Andigenum 
vs. Chilotanum Group   —     Similar to the previous assessment, we used the random-
Forest algorithm to examine possible ecological niches associated with the three 
ploidy levels of  S. tuberosum  Andigenum Group from South America (excluding 
the populations from Mexico and Central America). As before, the relative impor-
tance of variables was assessed using results from the randomForest library. 

 Richness analysis   —     We examined the richness of taxonomic and ploidal lev-
els by (1) using MaxEnt ( Phillips et al., 2006 ) to calculate the probability at each 
geographic unit or pixel, (2) using the  p -value of the threshold  “ maximum training 
sensitivity and specifi city ”  to include only geographic units for each taxonomic 
and ploidy class where the probability of presence was signifi cant, (3) summing 
up these values for all classes, and (4) the sum was also adjusted for the different 
areas of each unit area at different latitudes. This analysis results in a high-
resolution richness map based on the probable predicted geographic distribution. 
Maps were constructed using the software packages maps ( Brownrigg et al., 2007 ), 
RColorBrewer ( Neuwirth, 2007 ) and maptools ( Lewin-Koh et al., 2008 ) in R. 

 Extent of geographic coverage of taxonomic groups  —    The area of the distri-
bution of each species and the ploidy levels within the  S. tuberosum  Andigenum 
Group were calculated using the presence probabilities calculated by MaxEnt for 
each geographic unit or pixel and again only counting areas with a signifi cant 
probability of presence as determined by a signifi cance threshold calculated by 
MaxEnt (see  Richness analysis ). To ease comparison, we used relative area 
amounts; to this end, the taxonomic and ploidy classes with the smallest area were 
set to 1, and the expected areas covered by other classes were expressed as 
multiples. 

 RESULTS 

 General distributional data   —      The fi nal database of the land-
races (excluding  S. acaule  and  S. boliviense ) included 2780 re-
cords; of these, 2048 had existing latitude and longitude data or 
had suffi cient locality information for us to determine these data 
( Table 1 ). The tetraploids extend their range to the north in Ven-
ezuela and Central America and Mexico, and to the south in 
southern Bolivia and northern Argentina ( Fig. 1A – C ). The  S. tu-
berosum  Chilotanum Group is exclusive to central and south cen-
tral Chile, with a break in distribution of 560 km from the 
southernmost record of the Argentinean populations of the Andi-
genum Group ( Fig. 1D ). The hybrid potatoes  S .  ajanhuiri ,  S . 
 curtilobum , and  S .  juzepczukii  have much smaller distributions 
and are restricted to central Peru and Bolivia ( Fig. 1E – G, 2A ). 

 Environmental modeling   —      The results from the randomFor-
est analysis show a very high average error rate of 27% for the 
seven classes.  Solanum ajanhuiri  has a classifi cation error rate of 
100%; four classes ( S. curtilobum ,  S. juzepczukii ,  S. tuberosum  
Andigenum Group diploid,  S. tuberosum  Andigenum Group trip-
loid) have error rates over 50%, the tetraploid  S. tuberosum  Andi-
genum Group an error rate of 11%, but the  S. tuberosum  
Chilotanum Group had 0%. This indicates that  S. tuberosum  
Chilotanum Group, but not the other six classes, can be well dis-
tinguished by environmental variables. 

 Intermediate habitats for three cultivated hybrids   —      (Case 
a) Only two of the 18 populations of  S .  ajanhuiri  were predicted 
by the randomForest method as  S.   ajanhuiri ; one is predicted as 
 S.   boliviense  and 15 as diploid populations of  S. tuberosum  Andi-
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 Fig. 1.   Geographic distribution of ploidy accessions of the three ploidy levels of (A – C)  S. tuberosum  Andigenum Group (adg), (D)  S. tuberosum  
Chilotanum Group (chl), (E)  S. ajanhuiri  (ajh), (F)  S. curtilobum  (cur), (G)  S. juzepczukii  (juz), and the wild species (H)  S. acaule  (acl, involved in the 
hybrid origin of  S. curtilobum  and  S. juzepczukii ) and (I)  S. boliviense  (bol, involved in the hybrid origin of  S. ajanhuiri ). The maps are labeled by the ab-
breviated codes listed plus the number of mapped accessions.   
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and the  S. tuberosum  Chilotanum Group. About double the geo-
graphic area of the preceding three taxa is occupied by triploid 
 S. tuberosum  Andigenum Group and  S. curtilobum . The largest 
area of landraces is clearly occupied by the diploid and tetra-
ploid populations of  S. tuberosum  Andigenum Group ( Fig. 1 ). 

 DISCUSSION 

 Summary of geographical and ecological analyses   —      This is 
the fi rst geographic analysis of ploidy variation in the landrace 
cultivated potatoes. It documents that landrace potato popula-
tions are widely distributed in the uplands of the Andes from 
Venezuela south to northern Argentina, with a break in distri-
bution of 560 km to the lowlands of central to south-central 
Chile. Post-Colombian landrace introductions continue to be 
cultivated in Mexico and Central America ( Ugent, 1968 ), as 
they are elsewhere in the Canary Islands ( R í os et al., 2007 ) and 
India ( Spooner et al., 2005 ). The majority of the range of  S. tu-
berosum  and most of its ploidy variation occur from northern 
Peru to central Bolivia ( Fig. 4 ). The  S. tuberosum  Andigenum 
Group dominates the geographical coverage of the landraces, 
with the tetraploids most widespread, followed by diploid and 
triploid ploidy levels. Except for the  S. tuberosum  Chilotanum 
Group and the extreme northern and southern range extensions 
of the tetraploid populations of the Andigenum Group, it is dif-
fi cult to defi ne distinct habitats for the ploidy variants of the  S. 
tuberosum  Andigenum Group that are recognized as distinct 
Linnaean taxa by the taxonomic systems of  Bukasov (1978) , 
 Ochoa (1990 ,  1999 ), or  Hawkes (1990)  ( Table 1,  footnote 1). 
Such distinct habitats also do not occur for  S. ajanhuiri ,  S. 
curtilobum , and  S. juzepczukii , species we recognize, but that 
are clearly distinguished by morphological ( Huam á n and 
Spooner, 2002 ) and microsatellite data ( Spooner et al., 2007 ; 

 Gavrilenko et al., in press ) and have distinct allopolyploid ori-
gins ( Rodr í guez et al., 2010 ). 

 Crossability data   —      Two considerations bear on the question 
of whether cultivated landraces are to be considered a single 
biological species. First, are the groups sexually compatible 
and thus capable of genetic exchange? If so, are they actually 
undergoing recombination in their natural environment, result-
ing in a single biological species? Because the cultivated land-
races exist in a polyploid series, both intraploidy and interploidy 
crosses must be considered. Artifi cial intraploidy crosses within 
both diploid and tetraploid cultivated potatoes can be made 
without diffi culty ( Glendinning, 1969 ;  Haynes et al., 1995 ). 
Thus, in natural conditions, hybrid swarms of weedy  S. ajan-
huiri  have been found in potato fi elds containing both  S. ajan-
huiri  as a crop and diploid  S. tuberosum  (as  S. stenotomum , 
 Johns and Keen, 1986 ;  Johns et al., 1987 ). Within the diploids, 
 S. stenotomum  is readily crossable with  S. phureja  reciprocally 
( Matsubayashi, 1991 ). In addition, regular bivalent chromo-
some pairing has been observed in diploid hybrids of culti-
vated potato, such as between diploid members of the  S. 
tuberosum  Andigenum Group (=  S .  stenotomum  and  S. phureja ; 
 Matsubayashi, 1991 ). 

 Among ploidy levels, frequent genetic exchange is not only 
well documented, but it is considered to be important in the evo-
lution of  Solanum  species ( Carputo et al., 2003 ;  Den Nijs and 
Peloquin, 1977 ). Endosperm failure typically prevents the forma-
tion of triploid hybrids from crosses between cultivated diploids 
and tetraploids ( Marks, 1966b ). Endosperm balance number 
(EBN) provides a system to predict endosperm failure ( Hanneman, 
1994 ).  Solanum  species have been assigned EBN values such 
that inter-EBN crosses typically fail, while intra-EBN crosses are 
successful, barring other incompatibility mechanisms. However, 
the widespread occurrence of 2 n  gametes (gametes with the 

 Fig. 2.   Violin plots showing the density distribution of all seven classes of cultivated potatoes along the variables (A) latitude and (B) altitude.  Ab-
breviations:   S. tuberosum  Andigenum Group (adg),  S. tuberosum  Chilotanum Group (chl),  S. ajanhuiri  (ajh),  S. curtilobum  (cur), and  S. juzepczukii  (juz).   
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 Adiwilaga and Brown (1991)  extended the triploid technique to 
4 x  (2EBN) North and Central American species in the series 
 Longipedicellata  to include  S. stoloniferum . The species were 
crossed as females to 2 x  (2EBN) cultivated species in  S .  tubero-
sum  Andigenum Group plants selected for 2 n  pollen produc-
tion. Several of the resulting triploids produced 2 n  pollen and 
were successfully crossed as males to 4 x  (4EBN) cultivars. When 
crossed with tetraploids, pentaploid offspring were produced. 
The pentaploid  S. curtilobum  was likely produced from the union 
of 2 n  gametes from triploid  S. juzepczukii  and normal gametes 
from tetraploid  S. tuberosum  Andigenum Group. This hybrid 
has been recreated artifi cially using this scheme ( Schmiediche 
et al., 1980 ,  1982 ;  Hawkes, 1990 ). Pentaploid  S. curtilobum  
is fertile and able to hybridize with  S. tuberosum  ( Hawkes, 
1990 ). Pentaploid landraces, therefore, are not genetically isolated 
from the remainder of the cultivated gene pool. Consequently, 
some level of genetic recombination is likely to occur in hybrids 
among landraces. With every generation of sexual reproduction 
among the Groups, this recombination blurs genetic boundaries. 

 Andean farmers actively pursue genetic diversity among lan-
drace cultivars ( Quiros et al., 1990 ). Gene exchange among di-
verse genotypes is thought to be important for crop sustainability 
because it results in increased genetic diversity, disease resis-
tance, and adaptability to climate change ( Ugent, 1970 ). Each 
potato fi eld typically contains a diversity of cultivars and ploidy 
levels ( Jackson et al., 1980 ;  Brush et al., 1981 ;  Quiros et al., 
1990 ;  Zimmerer, 1991 ). In southern Peru, up to fi ve tubers are 
placed into a single hole when the crop is planted. These tubers 
are often from different cultivars and ploidy levels ( Quiros 
et al., 1990 ). This planting strategy serves at least three purposes 

somatic chromosome number) in diploid potatoes allows for ge-
netic exchange with tetraploids ( Quinn et al., 1974 ;  Den Nijs and 
Peloquin, 1977 ;  Jackson and Hanneman, 1999 ). Tetraploid off-
spring are produced following the hybridization of 2 n -gamete-
producing diploids. In addition to 2 n -gamete-mediated genetic 
exchange between diploids and tetraploids, some sexual off-
spring are produced in the absence of 2 n  gametes. 

 The triploid block is not complete in cultivated potato, and it 
seems to be weaker in  S. tuberosum  Andigenum Group than in 
the Chilotanum Group ( Marks, 1966a ). Consequently, crosses 
between tetraploid and diploid populations of the  S. tuberosum  
Andigenum Group have been reported to produce triploid off-
spring ( Jackson et al., 1977 ,  1978 ). The widespread occurrence 
of 2 n  gametes in diploid potatoes also leads to formation of au-
totriploid forms (cytotypes) ( Bukasov 1978 ). That ’ s why triploid 
populations of the Andigenum Group are highly polymorphic 
and widespread in Andean production regions ( Marks, 1966a ; 
 Bukasov, 1978 ;  Gavrilenko et al., in press ). Because of their 
diversity, it is likely that they are produced regularly in nature 
and that they continue to hybridize with  Solanum  relatives. 

 Gene fl ow from tetraploids to diploids can occur through 
triploids. Therefore, while 2 n  gametes allow for gene fl ow from 
diploids to tetraploids, triploids permit gene fl ow back to the 
diploid level because allotriploids might produce haploid gam-
etes in 3 x    ×   2 x  crosses ( Marks, 1966a ). 

 Triploids carrying genes for 2 n  gamete production can regu-
larly produce balanced 36 chromosome gametes. For example, 
triploid hybrids were created from crosses between the Mexi-
can 4 x  (2EBN) species  S. stoloniferum  and 2 x  (2EBN) culti-
vated diploids ( Brown, 1988 ). Both parents were selected for 
2 n  pollen production, which is a recessive trait. Consequently, 
fertile 2 n  pollen was formed by their triploid offspring, allow-
ing them to be crossed with 4 x  potato breeding cultivars (of 
hybrid origin with  S. demissum ) ( Brown and Adiwilaga, 1990 ). 

 Fig. 3.   Violin plots showing the density distribution of  S. tuberosum  
Chilotanum Group (chl) vs. all ploidy levels of the  S. tuberosum  Andige-
num Group (adg) along the variable absolute degrees of latitude.   

 Fig. 4.   Richness map of cultivated potato. The darker the shades of red 
the higher the total probability of cultivated potatoes summed over seven 
taxonomic and ploidy classes. Probabilities were calculated using MaxEnt.   
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of habitats (temperature seasonality for example) coinciding 
with the general idea of broader adaptability of polyploids 
( Ehrendorfer, 1980 ;  Grant, 1981 ;  Levin, 1983 ). However, in the 
case of cultivated plants, this is being confounded by human im-
pact. Humans may have selected tetraploids over diploids if they 
were linked to useful traits such as appearance, taste, or yield. For 
cultivated plants, one could argue that utility is one more dimen-
sion of their niche. But there is also an element of chance in history 
and selection for varieties that are actually selected and where they 
are grown. Thus, the question of broader inherent adaptation ca-
pacity of polyploids is diffi cult to resolve in cultivated potatoes. 

 Taxonomic conclusions   —      Our present ploidy and ecological 
analysis follows prior morphological analyses of  Huam á n and 
Spooner (2002)  and  Gavrilenko et al. (in press) , microsatellite 
analyses by  Raker and Spooner (2002)  and  Ghislain et al. 
(2006) , and morphological and microsatellite analyses by 
 Gavrilenko et al. (in press) . All these recent studies fail to sup-
port the cultivated potato taxonomies of  Bukasov (1978) , 
 Hawkes (1990) , and  Ochoa (1990 ,  1999 ), all of which fail to 
provide repeatable, reliable, and phylogenetically supportable 
classifi cations. These previous systems have all relied on ploidal 
level as one of a major set of discriminating factors, together with 
morphology and geography, for the names that  Spooner et al. 
(2007)  place in synonymy under the  S. tuberosum  Andigenum 
Group ( Table 1 , footnote 1). 

  Soltis et al. (2007)  argued that an autopolyploid cytotype 
should be formally named and considered to represent a species 
distinct from its diploid progenitor if it fulfi lled a range of bio-
logical, taxonomic, diagnosability, apomorphic, and evolution-
ary criteria. They applied this concept to wild species, but for 
taxonomic considerations, the concept should apply to culti-
vated species as well. We agree with this view, and our study 
was stimulated by an examination of geographical and ecologi-
cal factors that may provide support for formal taxonomic rec-
ognition of ploidy variants within the  S. tuberosum  Andigenum 
Group.  Solanum ajanhuiri ,  S. curtilobum , and  S. juzepcukii  are 
all the result of hybridization at either the diploid level or are 
allopolyloids and are recognizable by morphological and mo-
lecular criteria; we recognize them at the species level here. The 
 S. tuberosum  Chilotanum Group can be distinguished by its 
geographical range alone, and only with diffi culty, by morpho-
logical, molecular, or crossing data; we circumscribe it as a 
group according to the ICNCP ( Bricknell et al., 2009 ), but not 
using the ICBN ( McNeill et al., 2006 ). The failure of taxo-
nomic, diagnostic, apomorphic, and evolutionary species con-
cepts to provide that support justifi es placing all ploidy variants 
of the  S. tuberosum  Andigenum Group in synonymy. This cir-
cumscription is supported by studies of  Huam á n and Spooner 
(2002) ,  Ghislain et al. (2006) , and  Gavrilenko et al. (in press) . 
We have summarized the lack of biological barriers among the 
ploidy variants of the  S. tuberosum  Andigenum Group. The 
present analysis documents extensive geographical overlap and 
indistinguishable habitats throughout the majority of the range 
of the names we now recognize as synonyms. We consider our 
revised four-species taxonomy of cultivated potato now to be 
upheld by every major criterion used to defi ne species. 
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